Close Thu: 15.2, 15.3 (integrating!) Close Tue, May 16: 15.4, 15.5 (finish early) **Exam 2, May 16**th (13.3/4,14.1/3/4/7,15.1-15.5) Office Hours Today: 1:30-3:00pm (Smith 309) *Entry task*: Evaluate

$$(a)\int_{2}^{6}\int_{1}^{8} y \, dx dy$$

$$(b)\int_{2}^{6}\int_{1}^{8} 1\,dxdy$$

Note:
$$\iint_{R} 1 \, dA = \text{Area of R}$$

15.3 Double Integrals over General Regions

Type 1 (Top/Bot)	Type 2 (Left/Right)
Given a particular x in	Given a particular y in
the range:	the range:
$a \leq x \leq b,$	$c \leq y \leq d$,
we have	we have
$g_1(x) \le y \le g_2(x)$	$h_1(y) \le x \le h_2(y)$
$\begin{array}{c c} b & g_2(x) \\ c & c \end{array}$	$\begin{array}{c} d h_2(y) \\ c c \end{array}$
$\int f(x,y) dy dx$	f(x,y) dx dy
$\begin{vmatrix} J & J \\ a & g_1(x) \end{vmatrix}$	$\begin{bmatrix} J & J \\ c & h_1(y) \end{bmatrix}$
	_ ~ ~ ~

The surface $z = x + 3y^2$ over the rectangular region $R = [0,1] \times [0,3]$

The surface $z = x + 3y^2$ over the triangular region with corners (x,y) = (0,0), (1,0), and (1,3).

The surface z = x + 1 over the region bounded by y = x and $y = x^2$.

The surface z = sin(y)/y over the triangular region with corners at (0,0), (0, $\pi/2$), ($\pi/2$, $\pi/2$).

Examples:

1. Let D be the triangular region in the xy-plane with corners (0,0), (1,0), (1,3).

Evaluate
$$\iint_{D} x + 3y^2 dA$$

2. Find the volume of the solid bounded by the surfaces z = x + 1, $y = x^2$, y = 2x, z = 0. Setting up a problem given in "words":

1. Find integrand

Solve for "z" anywhere you see it. If there are two z's, then set up two double integrals (subtract at end).

2. Region

Graph the region in the *xy*-plane.

a) Graph all given x and y constraints.

b)And find the xy-curves where the surfaces (the z's) intersect.

Examples (directly from HW):

HW 15.3/10:

Find the volume enclosed by $z = 4x^2 + 4y^2$ and the planes x = 0, y = 2, y = x, and z = 0.

HW 15.4/8:

Find the volume below $z = 18 - 2x^2 - 2y^2$ and above the xy-plane.

HW 15.4/9:

Find the volume enclosed by $-x^2 - y^2 + z^2 = 22$ and z = 5.

HW 15.4/10:

Find the volume above the upper cone

$$z = \sqrt{x^2 + y^2}$$
 and below $x^2 + y^2 + z^2 = 81$

Reversing Order of Integration *Examples*

1. Draw the region of integration for

$$\int_{0}^{\pi/2} \int_{x}^{\pi/2} \frac{\sin(y)}{y} \, dy \, dx$$

then switch the order of integration. x^{0}

2. Switch the order of integration for

An applied problem:

Your swimming pool has the following shape (viewed from above)

The bottom of the pool is a plane with depths as indicated (the pool gets deeper in a linear way from left-to-right)

Solution:

 Describe the surface (what is z?): Slope in y-direction = 0 Slope in x-direction = -4/10 = -0.4 Also the plane goes through (0, 0, 0) Thus, the plane that describes the bottom of the pool is: z = -0.4x + 0y Describe the region in *xy*-plane: The line on the right goes through (20,0) and (25,25), so it has slope = 5 and it is given by the equation

y = 5(x-20) = 5x - 100

or x = (y+100)/5 = 1/5 y + 20The best way to describe this region is by thinking of it as a left-right region. On the left, we always have x = 0On the right, we always have x = 1/5 y + 20

Therefore, we have

$$\int_{0}^{25} \left(\int_{0}^{\frac{1}{5}y+20} -0.4 \ x \ dx \right) dy = -741. \ \overline{6} \ \text{ft}^{3}$$

15.4 Double Integrals over Polar Regions Recall:

- θ = angle measured from positive x-axis
- r = distance from origin

$$x = r \cos(\theta), y = r \sin(\theta), x^2 + y^2 = r^2$$

To set up a double integral in polar we will:
1. Describing the region in polar
2. Replace "x" by "r cos(θ)"
3. Replace "y" by "r sin(θ)"
4. Replace "dA" by "r dr dθ"

Step 1: Describing regions in polar.

HW 15.4/5: One loop of r = 6cos(3θ).

HW 15.4/4: Region in the first quadrant between the circles $x^2 + y^2 = 16$ and $x^2 + y^2 = 4x$.

HW 15.4/7: Describe the region inside $r = 1+cos(\theta)$ and outside $r = 3cos(\theta)$.

Step 2: Set up your integral in polar.

Conceptual notes:

Cartesian

Polar

0

Examples:

1. Compute

$$\iint\limits_{R} \frac{\cos(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} dA$$

where R is the region in the first quadrant that is between $x^2 + y^2 = 49$, $x^2 + y^2 = 25$ and below y = x. 2. **HW 15.4/5**: Find the area of one closed loop of $r = 6\cos(3\theta)$.

3. **HW 15.4/4**: Evaluate

$$\iint_{R} x \, dA$$

over the region in the first quadrant between the
circles x² + y² = 16 and x² + y² = 4x using polar

Moral:

Three ways to set up a double integral: *"Top/Bottom"*:

$$\iint\limits_R f(x,y)dA = \int\limits_a^b \int\limits_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx$$

"Left/Right":

$$\iint\limits_R f(x,y)dA = \int\limits_c^d \int\limits_{h_1(y)}^{h_2(y)} f(x,y) \, dx \, dy$$

"Inside/Outside":

$$\iint_{R} f(x,y) dA = \int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$$