Close Thu: 15.2, 15.3 (integrating!) Close Tue, May 16: 15.4, 15.5 (finish early) Exam 2, May $16^{\text {th }}$ (13.3/4,14.1/3/4/7,15.1-15.5) Office Hours Today: 1:30-3:00pm (Smith 309) Entry task: Evaluate
(a) $\int_{2}^{6} \int_{1}^{8} y d x d y$
(b) $\int_{2}^{6} \int_{1}^{8} 1 d x d y$

Note: $\iint_{R} 1 d A=$ Area of R
15.3 Double Integrals over General Regions

Type 1 (Top/Bot)	Type 2 (Left/Right)
Given a particular x in the range: $a \leq x \leq b$, we have $g_{1}(x) \leq y \leq g_{2}(x)$	Given a particular y in the range: $c \leq y \leq d$, we have $h_{1}(y) \leq x \leq h_{2}(y)$
$\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x$	$\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y$

The surface $z=x+3 y^{2}$ over the rectangular region $R=[0,1] \times[0,3]$

The surface $z=x+3 y^{2}$ over the triangular region with corners $(x, y)=(0,0),(1,0)$, and $(1,3)$.

The surface $z=x+1$ over the region bounded by $y=x$ and $y=x^{2}$.

The surface $z=\sin (y) / y$ over the triangular region with corners at $(0,0),(0, \pi / 2),(\pi / 2, \pi / 2)$.

Examples:

1. Let D be the triangular region in the xy-plane with corners (0,0), (1,0), (1,3).

$$
\text { Evaluate } \iint_{D} x+3 y^{2} d A
$$

2. Find the volume of the solid bounded by the surfaces $z=x+1, y=x^{2}, y=2 x$, $z=0$.

Setting up a problem given in "words":

1. Find integrand

Solve for "z" anywhere you see it.
If there are two z 's, then set up two double integrals (subtract at end).

2. Region

Graph the region in the $x y$-plane.
a) Graph all given x and y constraints.
b) And find the xy-curves where the surfaces (the z 's) intersect.

Examples (directly from HW): HW 15.3/10:
Find the volume enclosed by $z=4 x^{2}+4 y^{2}$ and the planes $x=0, y=2, y=x$, and $z=0$.

HW 15.4/8:
Find the volume below $z=18-2 x^{2}-2 y^{2}$ and above the xy-plane.

HW 15.4/9:

Find the volume enclosed by
$-x^{2}-y^{2}+z^{2}=22$ and $z=5$.

HW 15.4/10:
Find the volume above the upper cone
$z=\sqrt{x^{2}+y^{2}}$ and below $x^{2}+y^{2}+z^{2}=81$

Reversing Order of Integration

Examples

1. Draw the region of integration for

$$
\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin (y)}{y} d y d x
$$

then switch the order of integration.

An applied problem:

Your swimming pool has the following shape (viewed from above)

The bottom of the pool is a plane with depths as indicated (the pool gets deeper in a linear way from left-to-right)

Solution:

1. Describe the surface (what is z ?):

Slope in y-direction $=0$
Slope in x-direction $=-4 / 10=-0.4$
Also the plane goes through ($0,0,0$)
Thus, the plane that describes the bottom of the pool is: $\quad \mathbf{z}=\mathbf{- 0 . 4 x}+\mathbf{0 y}$
2. Describe the region in $x y$-plane:

The line on the right goes through $(20,0)$ and $(25,25)$, so it has slope $=5$ and it is given by the equation

$$
\begin{array}{ll}
& y=5(x-20)=5 x-100 \\
\text { or } & x=(y+100) / 5=1 / 5 y+20
\end{array}
$$

The best way to describe this region is by thinking of it as a left-right region.
On the left, we always have $x=0$
On the right, we always have $x=1 / 5 y+20$
Therefore, we have

$$
\int_{0}^{25}\left(\int_{0}^{\frac{1}{5} y+20}-0.4 x d x\right) d y=-741 . \overline{6} \mathrm{ft}^{3}
$$

15.4 Double Integrals over Polar Regions Recall:
θ = angle measured from positive x-axis
$r=$ distance from origin
$x=r \cos (\theta), y=r \sin (\theta), x^{2}+y^{2}=r^{2}$
To set up a double integral in polar we will:

1. Describing the region in polar
2. Replace " x " by " $r \cos (\theta)$ "
3. Replace " y " by " $r \sin (\theta)$ "
4. Replace "dA" by "r dr d θ "

Step 1: Describing regions in polar. Examples: Describe the regions

HW 15.4/5: One loop of $r=6 \cos (3 \theta)$.

HW 15.4/4: Region in the first quadrant between the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=4 x$.

HW 15.4/7:

Describe the region inside $r=1+\cos (\theta)$ and outside $r=3 \cos (\theta)$.

Step 2: Set up your integral in polar.

 Conceptual notes:
Cartesian

FIGURE 4

Polar

Examples:

1. Compute

$$
\iint_{R} \frac{\cos \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}} d A
$$

where R is the region in the first quadrant that is between $x^{2}+y^{2}=49, x^{2}+y^{2}=25$ and below $y=x$.

2. HW 15.4/5:

Find the area of one closed loop of $r=6 \cos (3 \theta)$.

3. HW 15.4/4:

Evaluate

$$
\iint_{R} x d A
$$

over the region in the first quadrant between the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=4 x$ using polar

Moral:

Three ways to set up a double integral:
"Top/Bottom":

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

"Left/Right":

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

"Inside/Outside":

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

